

Average Modeling of the Switched-Passive-Network Equalizer for **Effective Large-scale Battery Simulation**

Phuong-Ha La* and Sung-Jin Choi**

Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Republic of Korea

*laphuongha@gmail.com, **sjchoi@ulsan.ac.kr

ABSTRACT

Switched-passive-network equalizers are the most promising equalization techniques for series-connected battery cells. Because the switching period is much smaller than the chemical time constant of the battery, the equalization process cannot be effectively simulated by the traditional circuit simulation software. This paper presents the average models of the two most common topologies: the switched-capacitor, and the switched-resonance equalizers. By applying the average models to the simulations, the equalization process of a largescale battery pack can be executed. The simulation results are compared with the results of a real-time simulation system, which is very expensive and optimized for heavy computations. It is proved that the average-model-based simulations have almost accurate as the results obtained from the real-time simulator while the execution time is very fast. Besides, the proposed method is very simple and cost-effective for equalizer development.

Keywords: Average modeling, switched-passive-network, real-time test, large-scale battery simulation.

1. INTRODUCTION

Battery equalization is a critical function in the battery management system (BMS) to reduce the impact of battery inconsistency. The importance of the equalization methods is emphasized in second-life battery applications when the cell's characteristics become seriously mismatching [1]. The first step of the equalizer development is an operating simulation to assess the performances. Although the conventional software can simulate the transient and switching waveforms of the circuit well, the completely process of charging, discharging, or balancing operations takes a long execution time and suffers from the memory limitation of the computer.

There are two approaches to overcome the memory limitation. Firstly, a hardware-in-the-loop (HIL) test system can be used to emulate the equalizer circuit and battery [2]-[3]. It helps the simulations can be executed in real-time to assess the performance of the equalizer in a large-scale battery pack. However, the HIL system has a limited number of cores to ensure the real-time process. Besides, the cost is another barrier to popularize the HIL system. Secondly, the capacity of the battery can be scaled down to reduce the simulation time. However, the battery characteristics are changed accordingly since battery capacity is reduced. (Different OCV-SOC curve and impedance.)

By the way, the switching elements can be replaced by an average model. For example, the switched-capacitor (SC) [4] and switched-resonance (SR) [5] equalizers can be emulated by an impedance block in Fig. 1. Since the voltage of the two battery cells is mismatched, there is a current flow from the higher-SOC cell to the lower one. The charge transfer mechanism is similar to the operation principle of both SC and SR equalizers.

This paper presents the average models for the SC and SR equalizer and applies them to the classical structure of SC and SR equalizers. The detailed models of the SC and SR are

Fig. 1. Average model of the switch-capacitor and switched-resonance equalizers.

presented in Section 2 and verified in Section 3. Finally, the conclusion is made in Section 4.

2. PROPOSED METHOD

To execute a long-time simulation, switching components should be replaced by average models (AM). If the SC and the SR equalizers can be emulated by single impedance unit, energy is transferred from the higher voltage battery cell to the lower one until the voltage deviation is equalized. The configuration of the average model is dependent of the equalizer's structure. In this paper, the average models of the SC and the SR cells are applied for two classical structures in Fig. 2. The calculation of the average impedance is presented as follows.

$2.1.$ **Switched-Capacitor Equalizer**

According to the analysis in $[4]$, the apparent power of the equalizer is calculated by

$$
\tau_1 = R_1 C \tag{1}
$$

$$
\tau_2 = R_2 C \tag{2}
$$

$$
= l_{c,rms}^2 \frac{1}{f_s c} \frac{\exp\left(\frac{D_1}{f_s \tau_1}\right) \exp\left(\frac{D_2}{f_s \tau_2}\right) - 1}{\left[\exp\left(\frac{D_1}{f_s \tau_1}\right) - 1\right] \left[\exp\left(\frac{D_2}{f_s \tau_2}\right) - 1\right]},
$$
(3)

where R_1 and R_2 are the total resistances of the left-hand and right-hand sides of the switching cell; I_{c_rms} is the rms current flow through the equalizing capacitor; f_s is the switching frequency of the equalizer; C is the equalizing capacitance of the circuit; D_1 and D_2 are the duty cycle of the equalizer in two phases. The apparent power of the AM also is calculated by

$$
S = I_{c_rms}^2 Z_{SC},\tag{4}
$$

where Z_{sc} is the equivalent impedance of the SC equalizer. Hence, the impedance of the SC equalizer is calculated by

$$
Z_{SC} = \frac{1}{f_s C} \frac{exp\left(\frac{D_1}{f_s \tau_1}\right) exp\left(\frac{D_2}{f_s \tau_2}\right) - 1}{\left[exp\left(\frac{D_1}{f_s \tau_1}\right) - 1\right] \left[exp\left(\frac{D_2}{f_s \tau_2}\right) - 1\right]}
$$
(5)

If $D_1 = D_2 = D$ and $\tau_1 = \tau_2 = \tau$, Z_{sc} becomes

S

Fig. 2: Switching cells and its average models: (a)switched-capacitor equalizer; (b)switched-resonance equalizer.

Fig. 3: Simulation results of the average model vs real-time simulator: (a) real-time simulator of SC equalizer; (b) average model of SC equalizer; (c) real-time simulator of SR equalizer; (d) average model of SR equalizer

$$
Z_{SC} = \frac{1}{f_s C} \frac{1 + exp\left(\frac{-D}{f_s \tau}\right)}{1 - exp\left(\frac{-D}{f_s \tau}\right)}\,. \tag{6}
$$

 $\sqrt{2}$

$2.2.$ **Switched-Resonance Equalizer**

ź

Similarly, the average impedance of the SR can be calculated by the following equations [5].

$$
\beta = \frac{R}{2L} \tag{7}
$$

$$
\omega_r = \sqrt{\frac{1}{LC} - \beta^2} \tag{8}
$$

$$
Z_{SR} = \frac{1}{f_s C} \frac{1 + exp\left(\frac{-\beta \pi}{\omega_r}\right)}{1 - exp\left(\frac{-\beta \pi}{\omega_r}\right)}\tag{9}
$$

where L, C, and R are the resonance inductance, capacitance, and total circuit resistance, respectively; ω_r is denoted as the resonance angular frequency.

3. VERIFICATION

To verify the average models, simulations for four seriesconnected 18650 Li-ion battery cells (3.6V/2.6A) are executed on PSIM. On the other hand, the equalizers are emulated on a real-time simulation system as a reference. The setups on PSIM and real-time systems are summarized in Table I.

The equalization process is stopped after 3h simulation time to assess the performance. The voltage profiles of the simulations are illustrated in Fig. 3 to compare the results on the PSIM and the real-time simulation system. Although the final voltage deviation on PSIM simulation is slightly smaller than the real-time simulation, the behavior of the equalizers is almost the same. On the other hand, the HIL system requires 3h execution time to finish the equalization process, while the model-based simulation only requires 1 minute. Hence, the average model of the SC and the SR equalizers can be used to assess the performance of the equalizers during a long equalization process.

$\overline{4}$. **CONCLUSION**

This paper introduces the average models for the SC and SR equalizer cells to assess the performance of the equalization methods. By replacing the switching components with the average models, simulations of a large-scale battery system is possible without resorting to expensive HIL system. The simulation results show the similarity between the real-time simulation results and the simulation on PSIM. Thus, it is expected that the average model can be an effective method to develop the battery equalizer with reduced the simulation time.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of Korea (NRF) through the Government of Korea (MSIT) under Grant NRF-2020R1A2C2009303.

REFERENCE

[1] Gong, Xianzhi, Rui Xiong, and Chunting Chris Mi. "Study of the characteristics of battery packs in electric vehicles with parallel-connected lithiumion battery cells." IEEE Transactions on Industry Applications 51.2 (2014): 1872-1879

[2] W. C. Lee and D. Drury, "Development of a Hardware-in-the-Loop Simulation System for Testing Cell Balancing Circuits," in IEEE Transactions on Power Electronics, vol. 28, no. 12, pp. 5949-5959, Dec. 2013, doi: 10.1109/TPEL.2013.2256799.

[3] Phuong-Ha La and Sung-Jin Choi. "Novel Dynamic Resistance Equalizer for Parallel-Connected Battery Configurations." Energies 13.13 (2020): 3315.

[4] Phuong-Ha La and Sung-Jin Choi. "Reactive Balancing Circuit for Paralleled Battery Modules Employing Dynamic Capacitance Modulation." 2020 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2020.

[5] Ye, Yuanmao, and Ka Wai Eric Cheng. "Analysis and design of zerocurrent switching switched-capacitor cell balancing circuit for series-connected battery/supercapacitor." IEEE Trans. on Vehicular Tech. 67.2 (2017): 948-955.

2021 Power Electronics Conference

Average Modeling of the Switched-Passive-Network Equalizer for Effective Large-scale Battery Simulation **Example 19 and 2021 Power Electronics Conference**
 Effective Large-scale Battery Simulation
 Effective Large-scale Battery Simulation
 Effective Large-scale Battery Simulation
 Example of Korea
 Summary
 Examp 2021 Power Electronics Conference

rage Modeling of the Switched-Passive-N

Effective Large-scale Battery Sin

Phuong-Ha La* and Sung-Jin Choi

Department of Electrical, Electronic and Computer Engineering, University

li

Phuong-Ha La* and Sung-Jin Choi**

Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Republic of Korea

Summary

-
-
-
- -
	-
	-

Research Motivations

- battery accurately and vividly.
- simulation.
-
-
-

Average Modeling of Switched-Passive-Network 2021 Power Electronics Conference
 Average Modeling of the Switched-Passive-Network Equalizer for

Effective Large-scale Battery Simulation

Department of Electrical, Electronic and Computer Engineering, University of U **Example 19 and 19** 2021 Power Electronics Conference

Verage Modeling of the Switched-Passive-Network Equalizer

Effective Large-scale Battery Simulation

Department of Electrical, Electronic and Computer Engineering, University of Usan, Re **Example 12021 Power Electronics Conference**
 Effective Large-scale Battery Simulation
 **Department of Electrical, Electronic and Computer Engineering, University of Usan, Republic of Korea

numary

qualizer is required EXECUTE:** The show the similar of the Switched-Passive-Network Equalizer for Effective Large-scale Battery Simulation

Phuong-Ha La* and Sung-Jin Choi**

Department of Electrical, Electronic and Computer Engineering, Uni **Passive-Network Equalizer for

Battery Simulation**

Sung-Jin Choi**

sgineering, University of Ulsan, Republic of Korea

Average Modeling of Switched-Passive-Network

*Average modeling – The concept

*Average modeling – T S_k H S_m H K_m : \qquad \qquad $C + i$, $C V_{lm} V_{bk}$ C ; i , i $C V_{lm}$, i SmH V_{bkg} R_k S_kH $\left|\begin{array}{c} R_k \ S_m H \end{array}\right|$ $\left|\begin{array}{c} R_m \ O V_{\text{lm}} \end{array}\right|$ $\left|\begin{array}{c} R_k \ S_k H \end{array}\right|$ $\left|\begin{array}{c} R_k \ S_k H \end{array}\right|$ $\left|\begin{array}{c} R_m \ O V_{\text{lm}} \end{array}\right|$ $\mathbb{Q}^{\mathbf{V}_{\mathrm{bm}}}$ \mathbb{V}_{bk} $\mathbb{Q}^{\mathbf{V}_{\mathrm{bm}}}$ $\mathbb{Q}^{\mathbf{V}_{\mathrm{bm}}}$ $\mathbb{Q}^{\mathbf{V}_{\mathrm{bm}}}$ $\mathbb{Q}^{\mathbf{V}_{\mathrm{bm}}}$ $\frac{X_{\text{SC}}}{\text{Ly} + \frac{X_{\text{NC}}}{\text{Ly} + \frac{X_{\text{NC}}}{\text{Ly}$ x y SkL SmL S_k H I_k S_m H N_m \vdots $\qquad \qquad$ $C \neq V^{\text{SK}}$ is a set of \blacksquare S_m H K_m $\frac{1}{2}$ $V_{\rm bk}$ \bigcirc $\begin{bmatrix} R_k & S_k H & S_{\rm th} H & R_m \\ & \ddots & \ddots & \vdots \\ & & \ddots & \ddots \end{bmatrix}$ $v_{\rm bsR}$ | \bigcirc $V_{\rm bm}$ | | $\begin{array}{c|c}\n & \mathbf{Z}_{SR} \\
+ & \mathbf{A}V_k \\
 & \mathbf{I}_{S} \\
\end{array}$ $x^2 + y^2 - 1$ SkL SmL $\mathbf{L}S_n$ H P_m \vdots \qquad \qquad $V_{\rm bk}$ \bigcirc $V_{\rm ba}$ $\overline{ \qquad \qquad }$ $\overline{ \qquad \qquad }$ \qquad \qquad $\overrightarrow{Z_{xy}}$ $\overrightarrow{Z_{xy}}$ t0 t1 t3 t4 ^T D1T D2T Deadtime SkH, SkL $\begin{array}{c|c}\nS_mH, S_mL\n\end{array}$ $\begin{array}{c|c}\n\hline\n\vdots \\
\hline\n\vdots \\
\hline\n\vdots \\
\hline\n\vdots \\
\hline\n\end{array}$ **Switching compute for Equalizer for**
 Battery Simulation

Sung-Jin Choi**

signeering, University of Ulsan, Republic of Korea

Average Modeling of Switched-Passive-Network
 \triangle Average modeling - The concept
 $\frac{\sin \theta}{\$ **Battery Simulation**

Sung-Jin Choi**

single-capacitor and switched-Passive-Network
 $\frac{1}{2}$
 \frac **Example 2 Consumer for the consumer of the consumer for a Consumer for a Consumer for the consumer for a Consu Survey of the equalizer:**

Apparent power of the external of Switched-Passive-Network
 $\frac{1}{2}$ Average modeling - The concept
 $\frac{1}{2}$ Average modeling - The concept
 $\frac{1}{2}$ Average modeling - The concept
 $\frac{1}{2$ Let α Figure 2.1 and α Figure 2.1 B₁ = Sur

B₁ = Sur

R₁ = C₁

R₁ = Sur

R₁ = C₁

R₁ = Sur

R The contract of the equalizer
 u_{max} of u_{max} of u_{max} of u_{max} of u_{max}
 $u_{\$ $B_2 \frac{1}{1}$ B_3 B_4 $\frac{1}{1}$ $\frac{1}{$ S_2L and N_{max} is N_{max} in N_{max} in N_{max} $B_1 \stackrel{1}{\rightleftharpoons} S_1H \stackrel{1}{\longrightarrow}$ $v_{\rm ta} \diamondsuit$ \downarrow \downarrow \downarrow \diamondsuit \downarrow \down S_1L $\begin{matrix} \begin{matrix} \begin{matrix} \mathbf{S}_{11} & \mathbf{S}_{12} & \mathbf{S}_{13} & \mathbf{S}_{14} & \mathbf{S}_{14$ $B_2 \frac{1}{\pm 2}$ B_3 B_4 C_5 D_6 D_7 D_8 D_9 D_8 D_9 S_2L \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow $B_1 \stackrel{S_1H}{\longrightarrow} \stackrel{\leftarrow}{\longleftarrow} C_1$ Switched-Capacitor Equalizer
 B_2 $\begin{array}{c|c|c|c|c|c|c|c|c} \hline & S_2H & & & & & \mbox{Dendtime} \ \hline \begin{array}{c} S_2H & & & & & \mbox{Dendtime} \ \hline \begin{array}{c} S_3H & & & & \mbox{Dendtime} \ \hline \begin{array}{c} S_4H & & & & \mbox{Dendtime} \ \hline \begin{array}{c} S_5H & & & \mbox{Dendtime} \ \hline \begin{array}{c} S_4H & & & \mbox{Dendtime} \ \hline \begin$ Switched-Resonance Equalizer Concept of Average Modeling Be $\frac{1}{\sqrt{2}}$
 $\frac{1}{\sqrt$ sing $\frac{8\pi i}{k}$
 $\frac{1}{k}$
 $\frac{$ **Average impediance of SC-E**
 $z_{sc} = \frac{1}{f_c c} \frac{exp(\frac{f_c}{f_c}) - 1}{exp(\frac{f_c}{f_c}) - 1} \left[exp(\frac{f_c}{f_c}) - 1 \right]$

When $D_1 = D_2 = D_1$ and $\tau_1 = \tau_2 = \tau$,
 z_w becomes $\tau_1 = \frac{1}{f_c} \left[exp(\frac{f_c}{f_c}) - 1 \right]$
 $z_w = \frac{1}{f_c} \left[exp(\frac{f_c}{f_c}) - 1 \right] exp(\frac$ **as**
 $\frac{1}{\sqrt{1-\frac{1}{1-\$ **Solution**
 $\frac{1}{\sqrt{1-\frac{\sum_{i=1}^{n} x_i \cdot x_i}{\sum_{i=1}^{n} x_i}}}}$ $\frac{1}{\sqrt{1-\frac{\sum_{i=1}^{n} x_i \cdot x_i}{$ **k**
 $\frac{z_{\text{max}}}{z_{\text{max}}}}$
 $\frac{z_{\text{max}}}{z_{\text{max}}}$
 $\frac{z_{\text{max}}}{z_{\text{$ ned - Passive - Network
 $\frac{f(x)}{x} = \frac{f(x)}{x}$
 $\frac{f(x)}{x} = \$ $\frac{1}{\sum_{k=1}^{n} x_{k}}$
 $\frac{1}{\sum_{k=1}^{$ 1 V_{10} V_{10}
 V_{10} V_{10}
 V_{10}
 V_{10}
 V_{10}
 V_{10}
 V_{10}
 V_{11}
 V_{12}
 V_{13}
 V_{14}
 V_{15}
 V_{16}
 V_{17}
 V_{18}
 V_{19}
 V_{10}
 V_{11}
 V_{12}
 V_{13}
 V_{14}
 V_{15}
 $V_{$

-
-
-

Average impedance of Switched-Capacitor equalizer

 $f_s \tau$) τ and τ and τ and τ and τ

$$
Z_{SC},\qquad \qquad
$$

Average impedance of Switched-Resonance equalizer

$$
\beta = \frac{R}{2L}
$$
\n(7)\n
$$
\omega_r = \sqrt{\frac{1}{LC} - \beta^2}
$$
\n(8)\n(8)

Simulation Results

Conclusions

-
-
-

